
Release Management for Database
Applications

Dominic Delmolino
Vice President, System Architecture
Research Group
dominic.delmolino@agilex.com

WARNING

This presentation DOES NOT contain any of the following terms:
performance, optimization, skew, RAC, diagnostics, tracing, 10053*

*Hotsos required reference to 10046 tracing included on slide 10

Statements I want you to agree with

•

Ease of maintenance is a competitive
advantage which can decrease time to
market for new features

•

Auditing is not just for auditors

•

If the QA and Operations folks think
you’re smart, everyone else will follow

•

You’ll lose weight jumping up and down
for joy after you implement these ideas

Background

•

10 years of performance consulting at
Oracle Corporation.

•

2 years as interim CTO of Savant
Corporation during its transition to
Precise.

•

5 years as Director of Database
Engineering at Network Solutions.

•

Recently joined Agilex Technologies’

Research Group for consulting on data
and systems architecture
(http://www.agilex.com)

•

Personal Oracle blog at
http://www.oraclemusings.com/

http://www.agilex.com/
http://www.oraclemusings.com/

On the Beauty of Maintenance

•

To Maintain: To keep in a state of repair, efficiency and validity

•

“How rare it is that maintaining someone else's code is akin to
entering a beautifully designed building, which you admire as you
walk around and plan how to add a wing or do some redecorating.
More often, maintaining someone else's code is like being thrown

headlong into a big pile of slimy, smelly garbage.”

(Bill Venners)

•

“It is a bad plan that admits of no modifications.”

(Publilius

Syrus)

•

“It is impossible to retrofit quality, maintainability and reliability.”

(Dr.
Alan M. Davis)

Ease of Maintenance:
A Competitive Advantage
Well maintained systems:

•

Suffer fewer performance
crises

•

Allow for modifications with
clearer understanding of
impact

•

Live longer

•

Reflect positively on their
contributors

Faster, Cheaper, Reliable,
Efficient

Poorly maintained systems:

•

Suffer from complex
performance issues

•

Call out for “re-

implementations”

•

Fail often

•

Reflect poorly on their
contributors

Slower, Expensive, Unreliable

The Zen of Maintenance

•

Achieving the Zen of Maintenance begins with a
focus on it as a goal during design and
development

•

This is not about Quality as an abstract, it’s
about imagining a desired state and developing
toward it

•

How easy do you want your code deployments
to be?

Collective Code Ownership

Single development database

•

Instant synchronization
•

Locking issues
•

Overwrite issues
•

Need to segment work
appropriately

•

Global changes immediately
visible

•

Allows for larger data volumes

Private development databases

•

No locking issues
•

No overwrite issues
•

Delayed synchronization
•

Synchronization conflicts
•

No need to segment work
•

Global change coordination
requires extra work

How can you create maximum visibility for database code
changes?

IMHO: Single Database Wins Out

•

The advantages:
–

Larger Data Sets (to identify performance issues)

–

Instant visibility
–

Basic locking

•

Outweigh the “advantages”

of private databases:
–

Privacy and scratch can be accomplished with private
schemas instead of whole databases

•

Plus, we now can take advantage of a global
code audit trail

The Knock on Auditing

•

Most people associate auditing with checking to
see who updated, deleted or selected data in
order to prepare themselves for the “special
auditor”

visit

•

Auditing is covered in Oracle’s Security Guide

•

You are warned that it will affect performance

•

Yuck! Who wants that?

Auditing is the DDL equivalent of 10046
tracing
•

Excellent recent blog post by
Richard Foote on Oracle
Diagnostic Tools

•

In reference to trying to find out
what happened during a
“performance issue”

•

DDL Auditing provides the
same service for schema code
changes –

it lets you see
exactly what happened to
change the structure and code.

“Kids, imagine if we had a camera
on mum and saw exactly what
she was doing for the entire
time she was away getting the
milk. We could actually see
where all the time was spent,
see exactly what happened in
the 2 hours she was away. We
can account for every moment
and see exactly what
happened during the 1 hour
and 50 minutes of “lost”

time.”

Benefits of DDL Auditing

•

Allows you to fully track
all database code and
schema changes,
including the SQL

•

“Performance impact”
 identifies non-scalable

DDL operations used in
high-volume transactions

•

Makes you look “all-
 seeing, all-knowing”

What you can audit

•

You can audit the following
object types:

–

CLUSTER
–

CONTEXT
–

DIMENSION
–

DIRECTORY
–

INDEX
–

MATERIALIZED VIEW
–

PROCEDURE
–

SEQUENCE
–

SYNONYM
–

TABLE
–

TRIGGER
–

TYPE
–

VIEW

•

Special additions:

–

You’ll need to audit ALTER
TABLE and ALTER
SEQUENCE specifically

–

You’ll also want to audit
GRANTS

What you can see

•

Setting audit_trail to
DB_EXTENDED allows you
to capture audit statements
in the database along with
the SQL generating the audit
record

•

You can query
DBA_AUDIT_TRAIL to see
the resulting records

•

Now you can see that
different people worked on
the same procedure, or that
someone is working from
home, or that an object that
should not have been
touched was changed

•

Available information:
–

Operating system username of person
making change (includes Windows
username if coming from a client
machine)

–

Oracle username
–

Host / Terminal (useful to see where
people are working from)

–

Timestamp (actually a DATE)
–

Action / Action Name (operation
performed)

–

Owner / Object Name (object worked
on)

–

New Owner / New Name (captures
rename and dependent objects for
constraints)

–

SQL Text (extended only) also captures
some recursive SQL (for example index
creation for primary keys)

Not just for Oracle

•

SQL Server 2005 added DDL triggers, see

http://www.sqldbatips.com/presentations/PASS2006.ppt

for “Building a DDL Audit Solution using SQL Server 2005”

•

MySQL

Binary Log, see

http://pooteeweet.org/files/phptek06/database_schema_deployment.pdf

•

DB2 db2audit

•

Best part about Oracle’s solution is that all data is in a simple table (and you
can create an XML log too!)

http://www.sqldbatips.com/presentations/PASS2006.ppt
http://pooteeweet.org/files/phptek06/database_schema_deployment.pdf

How database objects are different from
regular code

•

Structural changes to the database schema often require
large scale data migration and/or transformation

•

Generally, you don’t “re-create”

a table every time you
modify it

•

It’s rare that you “re-install”

a database

•

You have requirements to “hot”

patch or upgrade the
schema while applications are accessing it

Look at your deployment requirements to
see how to set up source control
“IT”

Application:

•

Custom / Bespoke internal
enterprise or customer facing
application

•

Few installations, usually only
one version running

•

Large data volumes
•

Directly related to your
organization’s operations

•

Databases almost always
“updated”

and not “created”
•

Flexible ways to minimize
downtime through coordination

•

Frequent updates

“ISV”

Application:

•

Commodity application
•

Many installations, many
versions in place

•

New installations of many
different versions

•

Upgrades from lots of version
combinations

•

Highest priority is clean installs
and upgrades –

more so than
minimizing downtime

•

Fewer, larger updates

Differences in deployment packaging

“IT”

Application

•

Always upgrading, rarely
installing from scratch

•

Important to identify what was
delivered in each upgrade

•

Always need to minimize
downtime

•

Always need to deal with
legacy data

•

May need to allow multiple
versions to keep running at the
same time

“ISV”

Application

•

Always need to support “create
database from scratch”

for all
supported versions

•

May have less emphasis on
detailing upgrade changes

•

May be able to dictate
downtime

•

May not have to support
multiple versions at the same
time

Example deployment packages

“IT”

Application

•

Create v1 scripts
•

Create v1 → v1.3 scripts

•

Create v1.3 → v1.6
scripts

•

Create v1.6 → v2.0
scripts

•

Create v2.0 → v2.3
scripts

“ISV”

Application

•

Create v1 scripts
•

Create v2 scripts
–

Create v1 → v2 scripts

•

Create v3 scripts
–

Create v1 → v3 scripts
–

Create v2 → v3 scripts
–

Or, require running of v1
→ v2 → v3 scripts for v1
installations

We’ll focus on an “IT”

application for now

•

Emphasize upgrades over installs
•

Need detailed lists of what’s been changed in each
upgrade

•

Heavy emphasis on minimizing downtime, may have
multiple versions running at the same time during cut-

 over and upgrade
•

Well-known, legacy data readily available for testing

•

The main purpose of source code control for this kind of
application is to create delivery packages for deployment
by operations and to ensure coordination between
development, QA and production

Minimizing downtime thru having multiple
versions running at the same time
•

PL/SQL package versioning –

a versioned API

•

Every package name has a version number embedded
in it

•

Benefits include easy comparison / diff between versions
from within the database (TOAD Object Compare)

•

Do all packages get a new version number when a new
version is created?

•

Doesn’t this defeat the purpose of source code control if
we have PKG_V1 and PKG_V2?

•

Doesn’t 11g support package versioning?
•

Are there better ways to do this with synonym
management? Or file names in source code control?

Tantalizing support for object versions
“editions”

in 11g

•

From $OH/rdbms/admin/cdcore.sql:
remark "_CURRENT_EDITION_OBJ" describes all objects visible in the current
remark edition. Starting with release 11 of the Oracle DB, any views exposing
remark metadata for versionable

objects (package, function, procedure, object
remark type, view, synonym, library, trigger and assembly) must use this view
remark instead of obj$.
remark
remark "_ACTUAL_EDITION_OBJ" describes all actual objects (not stubs) in all
remark editions. Use this view instead of obj$ to describe all versions of
remark a versionable

object.
•

Create “editions”

of packages and other objects
•

Alter session to refer to a specific edition name
•

Not yet implemented in 11g R1, but error messages have been
defined

•

Perhaps this will replace the clunky method from the prior slide

Moving on...

•

During development, database engineers work directly
against single development database –

they do not

work with script files.
–

Locking provided by database or IDE (TOAD source control for
procedures / packages)

–

Supports rapid development without switching to filesystem

and
worrying about packaging

–

Backup and versioning provided by database backup
•

Since code is directly edited and compiled, and all
changes are tracked by DDL auditing, source code
control packaging is delayed until delivery into
Integration or QA test environments

•

If we can generate code out of the database, we
eliminate user scripting errors

Assembling a deployment package

•

Use your new-found knowledge about DDL auditing to
assemble a change list:
–

Find all new objects
–

Ignore objects created / destroyed during development
–

Find all alterations
–

Question why objects have been modified
–

Identify which developers are responsible for which object
changes

•

Take advantage of all methods to fill out your change list:
DDL audit trail, schema comparisons from IDEs

(TOAD,

SQL Developer), developer meetings to review who
changed what and why

Determine your standards for source code
delivery
•

Directory structure ideas:
/admin –

for files that retain the
same name but need to be
versioned (i.e., init.ora)

/v01_00_00 –

for version 1
package, includes initial table
creates (may also have
subdirectories for ddl, plsql,
dml, and installation scripts)

/v02_00_00 –

for scripts that
upgrade v1 to v2

•

File naming ideas:
–

One file per object
•

Pro: easy to trace / track,
probably not a lot of files for
v1 to v2 upgrade, easy to
generate

•

Con: lots of files for v1
–

File name includes object
owner, object type, object
name, action indicator (create,
modify, drop), project or bug
ticket number

•

Example action indicators: mk

(create), ch

(modify), rm

(drop)

•

Sample file names
–

mk-tbl-scott-emp.sql
–

ch-tbl-scott-emp-13058.sql

Use code generation techniques to create
scripts

•

Automatically generate the necessary file names
•

Ensure consistent code formatting

•

Inject source code control tags, possible other
tags

•

Ridiculously easy since the advent of
DBMS_METADATA package

•

May need special modifiers for your environment
(storage option replacement, online index
creation, statistics computation)

•

May need to hand-code ALTER scripts

Spend more time on deployment
sequencing instead of script coding
•

What can be pre-deployed without affecting the system?
–

All new objects, including new package versions.
–

Can we do any staging of data conversions?
•

What requires an outage?
–

Some table modifications
•

What can be done post-deployment?
–

Conversion of older data?
•

Think about sequencing (dependencies) and reducing
any downtime required

•

If you’re lucky enough to have a nightly copy of
production used for “read-only”

reporting, test and re-test

your installation scripting.

Create installation / upgrade scripts that are
easy to understand

•

Getting close to A:INSTALL
•

Name your installation scripts with sequencing,
schema and database names:

install-v01-fin-ddl-pre-001.sql
 install-v01-fin-plsql-pre-002.sql

 install-v01-fin-ddl-out-001.sql
 install-v01-fin-dml-pst-001.sql

•

Create an installation guide that explains the
sequencing, timing and purpose for each script

Results

•

Developers focus on new features instead of
source code scripting and control

•

Code change tracking done automatically using
DDL auditing

•

More time can be spent on analyzing
deployment to minimize downtime

•

Code generation done automatically to ensure
consistent scripts, clearly identifiable file names,
injection of necessary tags

In the end...

•

More focus on features, less on change
control bookkeeping

•

Auditing is your friend

•

Clear and consistent identification of
changes makes you look like a genius

•

Weight loss epidemic occurs as
everyone jumps for joy!

Thank You!

Questions?

	Release Management for Database Applications
	Statements I want you to agree with
	Background
	On the Beauty of Maintenance
	Ease of Maintenance: �A Competitive Advantage
	The Zen of Maintenance
	Collective Code Ownership
	IMHO: Single Database Wins Out
	The Knock on Auditing
	Auditing is the DDL equivalent of 10046 tracing
	Benefits of DDL Auditing
	What you can audit
	What you can see
	Not just for Oracle
	How database objects are different from regular code
	Look at your deployment requirements to see how to set up source control
	Differences in deployment packaging
	Example deployment packages
	We’ll focus on an “IT” application for now
	Minimizing downtime thru having multiple versions running at the same time
	Tantalizing support for object versions “editions” in 11g
	Moving on...
	Assembling a deployment package
	Determine your standards for source code delivery
	Use code generation techniques to create scripts
	Spend more time on deployment sequencing instead of script coding
	Create installation / upgrade scripts that are easy to understand
	Results
	In the end...
	Thank You!
	Slide Number 31

